Introduction to Reactor System

K.S. Rajan

Professor, School of Chemical & Biotechnology

SASTRA University

Table of Contents

1	QUIZ	7	3
	1.1	QUESTIONS	3
	1.2 A	ANSWERS	

1 Quiz

1.1 Questions

- 1. Determine the number of nucleons in $^{238}_{92}$ U.
- 2. What is the equivalent of 1 J in MeV?
- 3. Write Einstein's mass-energy relationship.
- 4. From Einstein's mass-energy relationship, prove that binding energy corresponding to mass defect of 1 amu is approximately 931 MeV.
- 5. Determine the binding energy of the nucleus in ${}^{233}_{90}$ Th.The mass of Th-233 is 233.041581 amu.
- 6. Determine the average binding energy of the nucleus in ${}^{4}_{2}$ He. The mass of 4 He is 4.002603 amu.
- 7. Calculate the velocity of a neutron whose kinetic energy is 2 MeV.

1.2 Answers

1. Number of nucleons = number of particles heavier than electron = number of protons + number of neutrons

Number of protons = 92 Number of neutrons = 238-92 = 146Number of nucleons = 146 + 92 = 238

2. 1 MeV = 1.6×10^{-13} J

Therefore, $1 J = 6.25 \times 10^{12} MeV$

3. $E = mc^2$ (E is the energy, m is the mass and c is the velocity of light)

4. $E = m_d c^2$

 $c = 2.998 \times 10^8 \text{ m/s}; \text{ md} = 1 \text{ amu} = 1.66 \times 10^{-24} \text{ g} = 1.66 \times 10^{-27} \text{ kg}$ $E = 1.66 \times 10^{-27} * (2.998 \times 10^8)^2 = 932.5 \text{ MeV}$ The difference between the calculated and target values is very small. This could be due to errors in rounding off.

5. Recalling Eq. (2), $m_d = Z(1.007825) + N(1.008665) - M$

Z= 90; A = 233; N = A-Z = 143, M = 233.041581 amu

Substituting above in Eq. (2) yields a mass defect (m_d) of 1.90176 amu.

Recalling that 1 amu corresponds to 931 MeV, the binding energy of U-235 is 1770.5 MeV

6. Recalling Eq. (2), $m_d = Z(1.007825) + N(1.008665) - M$

Z= 2; A = 4; N = A-Z = 2, M = 4.002603 amu

Substituting above in Eq. (2) yields a mass defect (m_d) of 0.030377 amu.

Recalling that 1 amu corresponds to 931 MeV, the binding energy of U-235 is 28.281 MeV

Average binding energy = Binding energy/A = 28.281/4 = 7.07025 MeV

7. From Eq. (6), we have $0.5m_nu_n^2 = E_n$

 $m_n = 1.008665 \text{ amu} = 1.6744 \text{ x } 10^{-27} \text{ kg}$

$$E_n = 2 \text{ MeV} = 3.2 \text{ x } 10^{-13} \text{ J}$$

Substituting for m_n and E_n in Eq. (6), we get the velocity of neutron as 19550 km/s